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We consider in this paper two-dimensional dynamical systems of the form x =P(x,y),p =Q(x,y),
where P and Q are analytic functions. We introduce a method for finding the limit cycles of the system.

This method consists of searching for

power series solution of the equation

P(3V /3x)+Q(dV /3y )=[(3P/3dx)+(3Q /3y)]V. The limit cycles are determined from the condition

V(x,y)=0.

PACS number(s): 05.45.+b, 02.30.Hq, 02.60.Lj, 03.20.+1i

I. INTRODUCTION

We consider two-dimensional dynamical systems of the
form

x=P(x,y), y=0Q(x,y), (1.1)

where P and Q are two real functions of the real variables
x and y, analytic in the whole plane (usually polynomi-
als), and the overdots denote a time derivative. Such
types of dynamical systems appear very often within
several branches of science, such as biology, chemistry,
astrophysics, mechanics, electronic, fluid mechanics, etc.
Even for the case n =2, the field of applications of (1.1) is
very extensive [1].

For a given system of type (1.1), it is a very difficult
problem to determine the number of limit cycles and
their configurations in phase space (a limit cycle is an iso-
lated periodic solution) [2]. If P and Q are polynomials of
degree n, a question of interest is to find the maximum
possible number of limit cycles for a given value of n.
Each for the case n =2, this problem has not been solved.
Regarding the problem of the distribution of limit cycles
in the x-y plane, there has also been very little progress
made. Some results in this direction have been obtained
only for special cases [3—5]. The determination of an
equation which gives the limit cycles in the x-y plane is
another problem where almost nothing is known.

In this paper we present a method for determining lim-
it cycles of (1.1) that enclose a critical point P, of node or
focus type, having the following properties: it is not de-
generated and the ratio of the two eigenvalues of the
linear part of (1.1) associated to this point is not a ration-
al number. The method is based on the following results:
if we consider the partial differential equation

ap 30

v 14
p —
ox  dy

e a 4 (1.2)

there exists a unique convergent power series solution of
(1.2) in some region D containing P,. This solution

satisfies
V(x,y)=0 (1.3)
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on any limit cycle contained in D and enclosing P,.

This paper is organized as follows. In Sec. II we
present the method for determining limit cycles and we
prove the result (1.3). In Sec. III we prove the existence
and uniqueness of an analytic solution of (1.2) in some
neighborhood of Py. In Sec. IV we consider a case that
presents limit cycles and for which the function V(x,y)
can be explicitly calculated; in this case, V is analytic in
the whole plane and then all the limit cycles are obtained
from V(x,y)=0. In Sec. V we analyze two particular
systems for which it is known that a unique limit cycle
exists; we calculate for these cases the function V' (x,y) as
a power series x and y and study the localization of limit
cycles from Eq. (1.3), at different orders of the expansion.
Finally, in Sec. VI we present our conclusions.

II. LIMIT CYCLES AND THE RECIPROCAL OF THE
INTEGRATING FACTOR

Let u,(¢) and u,(¢) be a particular solution of (1.1), i.e.,

d1=P(u1,U2), ﬂZ:‘Q(ul,uz). (2.1)

" The variational equations associated with u(¢),u,(¢) are

obtained by linearizing (1.1) in a neighborhood of this
solution. It is accomplished by writing

x=u,+tev;, y=u,tev,, (2.2)

where € is a small constant parameter.
Substituting (2.2) in (2.1) and keeping only the first or-
der in €, we obtain

. JoP oP
v1=vla(u1,u2)+v2$(ul,u2), o
. d 9 ’
v2=vla—g(u1,u2)+v2—a—yg—(ul,u2) .
These are the so-called variation equations associated
with the particular solution (u,,u,). They are a nonauto-
nomous system of two first order linear differential equa-
tions. When a solution of (2.3) is replaced in (2.2) we ob-
tain a solution of (1.1), up to the first order in €. When
the particular solution (u,u,) is known, (2.3) is usually
employed for studying the behavior of solutions of (1.1) in
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the neighborhood of (u,u,). This study permits one to
analyze the stability properties of the particular solution.

Here, we employ the variational equations (2.3) in a
different way. Equations (2.3) always have the special
solution

v1=P(u,,u2), U2=Q(u1,u2) . (2-4)

This solution defines a perturbation of (u,u,;) in the
tangent direction to this trajectory and it depends on ¢,
only through the functions u,(¢) and u,(¢). The curve
that represents this perturbed solution is the same as the
curve associated with (u;,u,). A point of the curve
represented by the particular solution (u,u,) is
transformed, by the perturbation (2.4), in another point
of the same curve (obviously up to the first order in €).
As it is well known [5], (2.4) is the only perturbation that
has this property.
More generally, a perturbation having the form

vi=v,(uy,uy), vy=vylug,u,), (2.5)

where v,(x,y) and v,(x,y) are also two analytic functions
as in (2.4), must satisfy the following system of two first
order linear partial differential equations:

dv, dv,; oP P

—_—— _.+ —_
ox +Qay U1 3x ”Zay’

3 3 (2.6
) Uy aQ aQ
P—2+Q—=v, T Hu, o= .
ax 2y Vtax U2
These equations are obtained by replacing (2.5) in (2.3).
Let us choose a particular solution

(u (t)=uy(t),uy(t)=u,,(t)) representing a limit cycle
of (1.1). The perturbed solution [u,,(t)+ev(u (1),
Uy (2)), up(t)+evy(u,y(t), uyy(t))] is a periodic func-
tion of . But a limit cycle is an isolated periodic solution
of (1.1). Therefore, this perturbed solution must
represent the same curve as the unperturbed one (i.e., the
limit cycle itself). The only infinitesimal perturbation, up
to a constant factor a, that leaves invariant a trajectory
(u(8),uy(2)) is (ev;=€P(u,u,), ev,=€Q(u,u,)). Asa
consequence, an analytic solution (v,,v,) of (2.6), calcu-
lated on the limit cycle, must satisfy

V(1 (), uy(1))=aP(u,,(t),uyy(t)),

2.7
Vot 1o (1), 50 () =aQ(u g (2),up(2)) .
Let us now introduce the function
V=Pv,—Qu, . (2.8)
Then, taking into account (2.7) we obtain
V(uqg,tiay)=0. (2.9)

Therefore all the limit cycles of (1.1) must satisfy Egs.
(2.9). Moreover, using (2.6), we can see that the function
V satisfies the following partial differential equation:

v 14
_+ - =
dx dy

oP 30

ax oy V. (2.10)

Equations (2.9) and (2.10) represent the fundamental re-

sults of this paper. We can enounce these results as fol-
lows: let ¥ be a limit cycle of the system (1.1). Let V be
an analytic solution of (2.10) in some region D of R%. If
is contained in D, then Vis zero on y.
Let us remark that, for V0, M =1/V satisfies the
equation
oM, ,OM _

opP , 3Q
ox dy +

ax oy M. (2.11)

Consequently, ¥V is the reciprocal of an integrating factor
of the equation Q dx —P dy =0.

III. SEARCH FOR A POWER SERIES SOLUTION
OF EQ. (2.10)

We assume that (1.1) has one or more critical points.
We choose one of them and we locate it at the origin. To
determine limit cycles that enclose this point we seek for
a power series solution of (2.10) in a neighborhood of the
origin.

A. Existence and uniqueness of the
formal series solution of (2.10)

To simplify the calculations we assume that the linear
part of P and Q has been transformed by a linear change
of variables to its diagonal form:

P(x,y)=p;x +p3x*+pyxy+psy>+ -+, a1
Q(x,y)=q,y +qsx>+q xy +qsp*+ -,

where p, and g, are the eigenvalues of the linear part of
(1.1) (here P and Q can be complex polynomials).

Equation (2.10) evaluated at the critical point (0,0)
gives

(p,+4,)V(0,0)=0 .
If p, +¢,70 then
V(0,0)=0.

Let us point out that, for a simple focus or a node type
critical point, p, +g¢, is always nonzero. Consequently,
the function V always vanishes on these two types of crit-
ical points. Let us suppose now that p,q,70 and
P1/9, € Q. Taking partial derivatives of (2.10) at the ori-
gin we obtain

W o 0r= ¥ 60=
P17, (0:0)=0, ¢,5-(0,0=0,

then
9

V = _§Z_ ==
ax (0:0)=0, F(0,0=0.

Therefore, the expansion of ¥ in powers of x and y can be
written as

V(x,p)=cpx+cxy+eoy?+ -

n
+ 3 c,,_k,kx”_kyk-i— cee
k=0

(3.2)
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Replacing (3.2) in (2.10) we find c,0=cyp =0 and cy
(which will be called c in the following) arbitrarily valued.
The calculation of the coefficients of terms of degree 3
yields the following 4 X 4 linear system of equations:

2py;—q, 0 O 0 C30 —q3
0 pr 0 0 € D3
0 0 g 0 cn =c g . (3.3)
0 0 0 2¢,—p,| |cos —Ps

As a consequence of the hypothesis on the eigenvalues,
this system of equations has a unique solution, each
coefficient c;; being proportional to c¢. This result can be
generalized to all orders. At order n, the (n+1)
coefficients c;; of the homogeneous polynomial of degree
n are also calculated from a diagonal linear system of
equations. The determinant A, of this system is a func-
tion only of p; and g, and is given by

n

=1l [(n—1=k)p,+(k—1)q,] .

(3.4)

The coefficients ¢, _; ;, with 0=k <n are determined in a
unique way and can be written as
fni(Pirgi)

n—kk ™ (n —1—k)p,+(k—1)q, ’ 3-5)

where f, ; is a polynomial in the variables p; and g;.

Then, under the above hypothesis, Eq. (2.10) has a
unique formal series solution in powers of x and y, up to a
multiplicative constant factor. The conditions we have
imposed in order to ensure the existence and uniqueness
of the formal series solution of (2.10) are sufficient but not
necessary. Anyway, the cases that are excluded are not
generic. An arbitrarily small perturbation of the system
can always be performed in a nongeneric case in such a
way that the new system will satisfy these conditions.

B. Local existence of a convergent power series solution
of (2.10) in a neighborhood of node and focus
type critical points

The determination of the domain of convergence of the
formal series (3.2) is a very difficult problem and it is not
possible to establish general results about it, even for the
simplest case where P and Q are second degree polynomi-
als. Nevertheless, it is easy to prove the local existence of
a convergent power series solution of (2.10). Here we use
the initial form of the system (1.1) where P and Q are two
real analytic functions [the linear part of (1.1) is not
necessarily of a diagonal form].

1. Focus type critical point

Let the origin be a critical point of focus type of (1.1),
with eigenvalues A=a=*ip (@70, B+#0). Then, there ex-
ists a neighborhood of the origin in which equation (2.10)
has a convergent power series solution. For the proof we
employ a result due to Poincaré [6]: under the above hy-
pothesis, the equations

f Qi_afl

f 2 Q—f2—~afz+ﬁf1

—Bf,
(3.6)

have at least a nonzero convergent power series solution
in some neighborhood of the origin, and this solution
satisfies f,(0,0)=£,(0,0)=0 and J (0,0)#0, where

ofy 3f, 3fy 3f,
ox dy dy ox

J(x,y)= (x,y) .

The functions f| and f, represent the change of variables
that linearizes (1.1) in a neighborhood of the critical

point. In this neighborhood, under the change of vari-
ables
X:fl(x’y)’ Y=f2(X,y) )

the system (1.1) is analytically equivalent to the linear
system

X=aX—BY, Y=aY+BX .

This linear system has the first integral

I=—BIn(X%+ Y% +2a arctan% .

Therefore, we have also a first integral for (1.1) given by
I=—BIn[fi(x,y)+f3(x

fZ(xay)

f16y)

From this constant of motion we find a reciprocal of an
integrating factor given by
fiGey+£3x,p)
J(x,y)
It is easy to verify, by a direct calculation, that this func-

tion V(x,y) satisfies (2.10). In addition, as J(0,0)70,
V(x,y) is analytic in some neighborhood of the origin.

)]

+2a arctan

Vix,y)=

2. Node type critical point

Let the origin be a critical point of (1.1) of node type,
with real eigenvalues A, and A,, such that A,;A,70 and
A/Ay& Q. Then, there exists a neighborhood of the ori-
gin in which Eq. (2.10) has a convergent power series
solution. For the proof we employ again Poincaré’s re-
sult [6]: under the above hypothesis, the equations

9f, 9f, of, , 8f,

P"a‘x"“‘*‘Q“ =MSf1 P_+Q _szz

have at least a nonzero convergent power series solution
in some neighborhood of the origin, and this solution
satisfies f,(0,0)=£,(0,0)=0 and J(0,0)0. In this case,
the system (1.1) has the first integral

I=MAIn|f(x,p)|—A;In|f,(x, )| .

From this expression we deduce a reciprocal of an in-

(3.7
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tegrating factor given by

_ L1l y)f(x,p)
J(x,)
As in Sec. III B 1 it is easy to verify that this function

V(x,y) satisfies (2.10). In addition, as J(0,0)7#0, V(x,y)
is analytic in some neighborhood of the origin.

Vix,y)

IV. A CASE THAT PRESENTS LIMIT CYCLES AND
FOR WHICH ¥V (x,y) CAN BE
EXPLICITLY CALCULATED

Let us consider the system

x=xg[x*+y*]—y, y=yglx?+y?]+x, @.1)

where g [u] is a polynomial function of u and the brack-
ets indicate the argument of the function. Writing this
system in polar coordinates, it is easy to show that it
presents n limit cycles, where n is the number of positive
real roots of g: R%,R 2 ...,R ,% These limit cycles are
circles of radius R;, centered at the origin, which is the
only critical point of (4.1). Therefore, all the limit cycles
of (4.1) are determined from the equation g [x2+y2]=0.
If ay50 is the zero degree term of g, the linear part of
(4.1) at the origin is

x a, —1

y

x
y

1 ag

The eigenvalues A, and A, of this linear part are the roots
of 14+(ay—A)? and then they satisfy conditions of Sec.
III A. We have proved in this section that there exists a
unique formal series solutions of (2.10). For the system
(4.1) this equation takes the form

2[g+(x2+y2)g'1V=(xg —y)ﬂ+(yg +x )QK , (4.2)
ox ay
where g’ indicates the derivative of g with respect to u.

It can be easily verified that

Vix,y)=(x*+yHg[x?+y?] (4.3)

is a solution of (4.2). This solution is analytic in the
whole plane and is, therefore, the unique solution of this
type. We see that the equation W (x,y)=0 contains all
the limit cycles and the critical point of (4.1). If g[«] has
no positive real roots, then (4.1) has no limit cycles. In
this case, the condition ¥ (x,y)=0 determines only a tra-
jectory of (4.1): the critical point. Let us consider the
particular case

glul=(1—u) -

for which the system (4.1) has two limit cycles, the circles
of radius R ;=1 and R, =2. For this system a solution of
(3.6) is given by
x|x2+y2_4|1/6
Ix2+4y2—12/3
y1x2+y2_4'1/6
|x2+4y2—1[273

fl(x,y):

>

fz(X,y):

Let us briefly explain the method which leads to this re-
sult. As the system (4.1) satisfies the conditions of Sec.
IIT A, it has a first integral of the form

fZ(x7y)
fl(x7y) ’

Moreover, this system is completely integrable, as can be
seen by writing it in polar coordinates. In consequence,
an explicit expression of the first integral can be given
and the functions f,f, can be determined. The com-
mon domain of analyticity D (f,f,) of f; and f, is the
interior of the limit cycle of radius R;=1, whereas
Vx,p)=(f2+f3)/J=(x2+y?)g[x%+y?] is analytic in
the whole plane.

For the general case (1.1), D(f,,f,) cannot contain
any limit cycles, because, in this domain, the system is
analytically equivalent to its linear part. In consequence,
if the domain of convergence D (V) of V is not greater
than D (f,,f,), the function V is not useful for detecting
limit cycles. But, from the example considered above, we
can hope that, in the general case, D (V) is greater than
D(f,f,). Unfortunately, it is difficult to establish a re-
lation between D (¥) and D(f, f,).

I=—BIn[f3(x,y)+ f3(x,y)]+2a arctg

V. POWER SERIES SOLUTION OF EQ. (2.10) FOR
TWO SYSTEMS THAT PRESENT A LIMIT CYCLE

In this section we study two representative examples
among all the systems that we have analyzed using our
method. We seek V(x,y) as a power series in x and y.
Let us write V(x,y) as

Vi, )= 3 v,(x,y),

n=0

(5.1)

where the homogeneous polynomial of degree n, v, (x,y),
is given by

n
v (60)= g ix" Fpk. (5.2)
k=0
The truncated sum at order N is

N
Va(x, )= 3 v,(x,y) . (5.3)
n=2

For the two examples considered in this section we have
studied the curves obtained from the conditions
Vn(x,y)=0, with increasing values of N. We have com-
pared these curves with the numerical results obtained
with the Runge-Kutta method. In particular, we have
compared the coordinates of the intersection points of
the limit cycle with the coordinate axes.

The first example that we consider is the well known
van der Pol equation for e=1:

i=y, y=—x+e(1—x2)y . (5.4)

This system has a unique limit cycle that encloses the
only critical point, located at the origin. The eigenvalues
of the linear part of (5.4) at this critical point are
(1£iV73). Therefore, there exists a unique formal series
solution of (2.10). - We have calculated the coefficient
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TABLE I. Intersections of curves Vy(x,y)=0 with x and y
axes for the van der Pol equation (system 5.4). When x,, x, are
complex numbers, the curve is open.

Intersections with y axis Intersections with x axis

Order N Y1,Y2 X1,X,
8 +2.150 +1.243
10 +2.274 +(1.247+i0.380)
12 +2.203 +1.343
14 +2.194 +(1.364+:0.293)
16 +2.185 +1.429
18 +2.179 +(1.454+i0.239)
20 +2.175 +1.504
22 +2.173 +(1.523+:0.204)
24 +2.171 +1.570
26 +2.170 +(1.595+i0.178)
28 +2.16944 +1.629
30 +2.16896 +(1.653%i0.159)
32 +2.16867 +1.683
34 +2.16850 +(1.706%:0.143)
36 +2.16844 +1.732

Cp—kk Of (5.2) employing the MATHEMATICA computer
algebra system. In this case, the series (5.1) contains only
homogeneous polynomials of even degree; this is a conse-
quence of the invariance of (5.4) under the transformation
X—>—X,y—>—).

We found that, from N =8, the curves Vy(x,y)=0 are
alternatively closed for the orders N =4;j and open for
the orders N =4j +2, with j =1,2,3.... For N=4j+2
the equation Vu(x,0)=0 has only complex roots.
Among them, there are two pairs of complex conjugates
roots which have a real part very near the values that
have been found for the precedent order (N =4j). The
imaginary part of these two pairs of roots is small and de-
creases as N increases (see Table I).

Table I gives the values of the intersection points of the
curves Vy(x,y)=0 with the coordinate axes, for
8 <N =36. The intersections with the y axis are rapidly
very near the numerical value |y|=2.17, obtained with
the Runge-Kutta method. The intersections with the x-

FIG. 1. Curve Vyg(x,y)=0 for the van der Pol equation (sys-
tem 5.4).

FIG. 2. Curve Vy(x,y)=0 for the van der Pol equation. The
dotted line represents the numerical curve obtained by the
Runge-Kutta method.

axis approach more slowly, but in a monotonous way, to
the exact value |x|=2. The curves Vy(x,y)=0 are
closed, for N =4, as early as N =8. For the value N =8,
the curve is shown in Fig. 1; it is very surprising to see
that it reproduces some of the qualitative properties of
the limit cycle of the van der Pol equation. The curves
obtained from greater values of N =4;j regularly ap-
proach to the numerical trajectory, as it is shown in Figs.
2 and 3, for N=20 and N =32, respectively. The
analysis of the coefficients of the series (5.1) for the van
der Pol equation leads us to believe that the limit cycle is
completely contained in the interior of the domain of
convergence of (5.1).
Our second example is given by the system

x=—y+ix+x? y=x(1+x+y). (5.5)
It is proved in [4] that this system has a unique limit cy-
cle that encloses the only critical point, located at the ori-
gin. The two eigenvalues of the linear part of (5.5) at the
critical point are complex conjugate numbers with
nonzero real part. Therefore, the formal series solution
of (2.10) is unique for this system. Here, the series (5.1)

FIG. 3. Curve V3,(x,y)=0 for the van der Pol equation. The
dotted line represents the numerical curve obtained by the
Runge-Kutta method.
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TABLE II. Intersections of curves Vy(x,y)=0 with x and y axes for system 5.5. When y, is a com-

plex number, the curve is open.

Intersections with x axis

Intersections with y axis

Order N b3 2 Y1 Y2

4 0.149 —0.327 —0.309 0.443

6 0.327 —0.373 —0.263 0.456

7 0.321 —0.414 —0.258 Complex

8 0.318 —0.386 —0.256 0.458

9 0.317 —0.402 —0.2546 Complex

10 0.3159 —0.391 —0.2539 0.456

11 0.3156 —0.398 —0.2535 Complex
12 0.31539 —0.393 —0.2533 0.453

13 0.31528 —0.396 —0.2532 0.457+i0.096
14 0.31523 —0.3938 —0.2531 0.451

15 0.315207 —0.3951 —0.25307 0.453+i0.084
16 0.315196 —0.3944 —0.25305 0.451

17 0.315192 —0.3947 —0.25304 0.455+i0.074
18 0.315192 —0.3947 —0.253054 0.458

19 0.315194 —0.3945 —0.253033 0.474+i0.065
20 0.315196 —0.3948 —0.253032 0.496+i0.064
21 0.315199 —0.3944 —0.253033 0.452

22 0.315200 —0.3948 —0.253034 0.437+i0.058
23 0.315201 —0.3944 —0.253036 0.428

contains homogeneous polynomials of even and odd or-
ders. Between N =4 and N =19 the curves Vy(x,y)=0
are closed for N even and open for N odd. From N =20
and above the situation is reversed: the curves are open
for N even and closed for N odd.

Table II gives the intersections of these curves with the
coordinates axes for 4 <N =<23. We see that the intersec-
tions with the x axis are rapidly very near to the numeri-
cal values x; =—0.394 and x,=0.315, obtained with the
Runge-Kutta method. With respect to the intersections
with the y axis, they are also very satisfactory for the neg-
ative intersections, with a sequence that rapidly ap-
proaches the numerical value y, = —0.253. The conver-
gence of the sequence that gives the positive intersec-
tions, up to the order N =23, is more doubtful. The bot-
tom part of the curves Vy(x,y)=0 approaches very well

FIG. 4. Curve V,(x,y)=0 for system (5.5).

the numerical curve, while the upper part does not.

In Fig. 4 we exhibit the curve V,(x,y)=0, which is the
closed curve of the smallest order. As in the case of the
curve Vg(x,y)=0 for the van der Pol equation, this curve
contains, already for N =4, some qualitative aspects of
the limit cycle of (5.5).

The analysis of the coefficients of (5.1) and Figs. 5 and
6 for this example, seem to indicate that the domain of
convergence of the series (5.1) contains the bottom part
of the curve, but, perhaps, does not contain the upper
one.

If we are only interested in the problem of the ex-
istence of the limit cycle and its approximate localization
in phase space, it seems to be sufficient to study the

[P A PR
- \yz=o.539"~..

FIG. 5. Curve V,(x,y)=0 for system (5.5). The dotted line
represents the numerical curve obtained by the Runge-Kutta
method.
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¥,=0.539 Ss.

FIG. 6. Curve V,3(x,y)=0 for system (5.5). The dotted line
represents the numerical curve obtained by the Runge-Kutta
method.

curves Vy(x,y)=0 for small values of N. The same type
of behavior has been found in all the examples that we
have studied with the MATHEMATICA computer algebra
system.

We have also studied a case that does not present limit
cycles:

x=ax—y+(a+1)x2—xpy, p=x+x?

(with a=—1). (5.6)

It has been shown in [4] that the system (5.6) does not
have limit cycles for a&€[—1,0]. We calculated the
coefficients of (5.1) for the system (5.6), up to order
N =12. No closed curve has been found up to this order.

From the examples analyzed in this section we find
that the curves defined by the conditions Vy(x,y)=0
give, even for small values of N, a good qualitative infor-
mation on the existence of limit cycles and their localiza-
tion in phase space.

VI. CONCLUSIONS

In this paper we have studied the limit cycles of two-
dimensional analytic systems of the form (1.1). The fun-
damental result that we have obtained is the following:
the partial differential equation
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has a unique convergent power series solution in a region
D containing a nondegenerate critical point P, of node or
focus type, when the ratio of the two eigenvalues associ-
ated with P, is not a rational number. This solution van-
ishes on any limit cycle, contained in D and enclosing P,,.
In Sec. IV we furnished examples for which all limit cy-
cles enclosing a given critical point are contained in the
region of convergence of V. In Sec. V we employed this
result to localize limit cycles for two particular systems,
by explicitly calculating the formal series solution of the
partial differential equation written above. For the van
der Pol equation, the limit cycle seems to be completely
contained in the region of convergence of V. For the ex-
ample (5.5), the region of convergence of V seems to con-
tain only a part of the limit cycle. Obviously, no definite
answer can be given about convergence properties by us-
ing truncated series expansions.

The more important open question concerning this
work is, for the general case, how many limit cycles en-
closing a critical point are contained in the convergence
region of V. Another interesting problem to be con-
sidered is the study of systems that have several free pa-
rameters. In this case, the conditions ¥V (x,y)=0 can be
analyzed as a function of these parameters and employed
to detect the possible bifurcations that occur as the pa-
rameters are varied.
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